
Page of 1 40 Paladin Blockchain Security

Smart Contract
Security Assessment

For Avalaunch (Sale v2)
23 January 2023

paladinsec.co info@paladinsec.co

Final Report

Table of Contents

Table of Contents 2

Disclaimer 3

1 Overview 4

1.1 Summary 4

1.2 Contracts Assessed 4

1.3 Findings Summary 5

1.3.1 AvalaunchSaleV2 6

1.3.2 SalesFactory 7

1.3.3 AvalaunchMarketplace 7

2 Findings 8

2.1 AvalaunchSaleV2 8

2.1.1 Privileged Functions 10

2.1.2 Issues & Recommendations 11

2.2 SalesFactory 28

2.2.1 Privileged Functions 28

2.2.2 Issues & Recommendations 29

2.3 AvalaunchMarketplace 33

2.3.1 Privileged Functions 33

2.3.2 Issues & Recommendations 34

Page of 2 40 Paladin Blockchain Security

Disclaimer
Paladin Blockchain Security (“Paladin”) has conducted an independent audit to verify the integrity
of and highlight any vulnerabilities or errors, intentional or unintentional, that may be present in
the codes that were provided for the scope of this audit. This audit report does not constitute
agreement, acceptance or advocation for the Project that was audited, and users relying on this
audit report should not consider this as having any merit for financial advice in any shape, form or
nature. The contracts audited do not account for any economic developments that may be pursued
by the Project in question, and that the veracity of the findings thus presented in this report relate
solely to the proficiency, competence, aptitude and discretion of our independent auditors, who
make no guarantees nor assurance that the contracts are completely free of exploits, bugs,
vulnerabilities or deprecation of technologies. Further, this audit report shall not be disclosed nor
transmitted to any persons or parties on any objective, goal or justification without due written
assent, acquiescence or approval by Paladin.

All information provided in this report does not constitute financial or investment advice, nor
should it be used to signal that any persons reading this report should invest their funds without
sufficient individual due diligence regardless of the findings presented in this report. Information is
provided ‘as is’, and Paladin is under no covenant to the completeness, accuracy or solidity of the
contracts audited. In no event will Paladin or its partners, employees, agents or parties related to
the provision of this audit report be liable to any parties for, or lack thereof, decisions and/or
actions with regards to the information provided in this audit report.

Cryptocurrencies and any technologies by extension directly or indirectly related to
cryptocurrencies are highly volatile and speculative by nature. All reasonable due diligence and
safeguards may yet be insufficient, and users should exercise considerable caution when
participating in any shape or form in this nascent industry.

The audit report has made all reasonable attempts to provide clear and articulate
recommendations to the Project team with respect to the rectification, amendment and/or revision
of any highlighted issues, vulnerabilities or exploits within the contracts provided. It is the sole
responsibility of the Project team to sufficiently test and perform checks, ensuring that the
contracts are functioning as intended, specifically that the functions therein contained within said
contracts have the desired intended effects, functionalities and outcomes of the Project team.

Paladin retains full rights over all intellectual property (including expertise and new attack or
exploit vectors) discovered during the audit process. Paladin is therefore allowed and expected to
re-use this knowledge in subsequent audits and to inform existing projects that may have similar
vulnerabilities. Paladin may, at its discretion, claim bug bounties from third-parties while doing so.

Page of 3 40 Paladin Blockchain Security

1 Overview
This report has been prepared for Avalaunch’s Sale v2 contracts on the Avalanche
network. Paladin provides a user-centred examination of the smart contracts to
look for vulnerabilities, logic errors or other issues from both an internal and
external perspective.

1.1 Summary

1.2 Contracts Assessed

Project Name Avalaunch

URL https://avalaunch.app/

Platform Avalanche

Language Solidity

Name Contract
Live Code
Match

AvalaunchSaleV2

SalesFactory

AvalaunchMarketplace

Page of 4 40 Paladin Blockchain Security

https://avalaunch.app/

1.3 Findings Summary

Classification of Issues

Severity Found Resolved
Partially
Resolved

Acknowledged
(no change made)

2 2 - -

3 2 - 1

13 9 1 3

8 4 - 4

Total 26 17 1 8

 Low

 High

 Medium

 Informational

Severity Description

Exploits, vulnerabilities or errors that will certainly or probabilistically lead
towards loss of funds, control, or impairment of the contract and its
functions. Issues under this classification are recommended to be fixed with
utmost urgency.

Bugs or issues with that may be subject to exploit, though their impact is
somewhat limited. Issues under this classification are recommended to be
fixed as soon as possible.

Effects are minimal in isolation and do not pose a significant danger to the
project or its users. Issues under this classification are recommended to be
fixed nonetheless.

Consistency, syntax or style best practices. Generally pose a negligible level
of risk, if any.

 Low

 High

 Informational

 Medium

Page of 5 40 Paladin Blockchain Security

1.3.1 AvalaunchSaleV2

ID Severity Summary Status

01 The _participate function refunds the registration fee as
sale.token instead of AVAX, breaking the contract completely

02 The contract does not work with tokens that have a fee on transfer

03 Governance privileges: The Avalaunch team has exceptional control
over the functioning of the protocol

04 Missing length validation for setVestingParams

05 Signature scheme is suboptimal which means it might lead to replays
on chain forks

06 Checks-effects-interactions pattern is not adhered to

07 registerForSale can be called while the sale is not yet created and
even if sale.saleEnd has been exceeded

08 Users might not be able to exhaust their full allowance

09 saleEnd cannot be reconfigured if no portions have been configured
yet

10 Dexalot logic can severely malfunction for tokens without a symbol

11 Gas optimizations

12 Validation: Contract does not prevent moderator from accidentally
depositing tokens twice

13 Validation: Lack of phase validation for different participation
methods

14 AVAX can get stuck in the implementation contract

15 Typographical issues

RESOLVED

LOW

LOW

RESOLVED

INFO

RESOLVED

HIGH

INFO

LOW

INFO

ACKNOWLEDGED

LOW

RESOLVED

RESOLVED

MEDIUM

RESOLVED

RESOLVED

LOW

PARTIAL

MEDIUM

RESOLVED

ACKNOWLEDGEDLOW

INFO

ACKNOWLEDGED

PARTIAL

RESOLVED

INFO

LOW

ACKNOWLEDGED

Page of 6 40 Paladin Blockchain Security

1.3.2 SalesFactory

1.3.3 AvalaunchMarketplace

ID Severity Summary Status

16 getAllSales has an incorrect input validation which causes the
initial requirement to pass even though the endIndex is out of range

17 Sales moderator is a fixed wallet which cannot be changed

18 Checks-effects-interactions pattern is not respected

19 Typographical errors

20 Gas optimizations

LOW

PARTIAL

PARTIAL

INFO

LOW

LOW

INFO

PARTIAL

RESOLVED

RESOLVED

ID Severity Summary Status

21 Signature lacks replay protection

22 Governance risk: Admin can frontrun any purchase with an increase
of the fee parameters

23 There is no way to remove sale contracts

24 Checks-effects-interactions pattern is not adhered to

25 Contract deployment does not disable the initializer

26 Typographical errors

RESOLVED

LOW

LOW

LOW

RESOLVED

RESOLVED

RESOLVED

RESOLVED

RESOLVED

MEDIUM

INFO

HIGH

Page of 7 40 Paladin Blockchain Security

2 Findings

2.1 AvalaunchSaleV2

AvalaunchSaleV2 is the updated main presale contract on the Avalaunch
launchpad. This contract has an abundance of features making Avalaunch sales
some of the most interesting mechanisms out there.

From a high level, sales have the following phases:

- Idle (configuration and marketplace phase)

- Registration

- Participation

- Validator

- Staking

- Booster

During the idle phase, the sale is configured by the Avalaunch administrators.
Examples of configurable parameters are: the token which will be sold, amount that
will be sold, how the unlocks will occur, and more.

Once configured, admins can enable the registration phase which allows users to
sign up to the sale provided the administrators gave them permission through an
off-chain signature. Registration incurs a fee, however, which will be paid back to
the users.

After the registration phase, the participation phase begins, where users can buy
tokens using AVAX tokens. During this phase, the tokens that have been bought will
be locked and cannot be claimed until the vesting period is over.

Page of 8 40 AvalaunchSaleV2 Paladin Blockchain Security

The contract also has a feature where tokens can be deposited into a platform
called Dexalot.

Throughout the different phases, the administrators can also shift the sale end date
and change the parameters related to the way the tokens can be bought.

During the vesting period, purchased tokens are divided into several portions. Each
portion has a specific unlocking time, and a percentage of tokens that will be
unlocked at that time. This means that the tokens are locked for a specific period of
time and will be gradually released over that period.

Purchased tokens can be withdrawn or listed on the marketplace depending on
their portion state. The portion state can be "Available", "Withdrawn",
"WithdrawnToDexalot", “OnMarket", or "Sold".

When a portion is in the "Available" state, it means that the tokens have not been
withdrawn or listed on the marketplace yet. The tokens can be withdrawn by the
user at any time after the unlocking period has passed.

When a portion is in the "Withdrawn" state, it means that the tokens have been
withdrawn and can be used.

When a portion is in the "WithdrawnToDexalot" state, it means that the tokens have
been withdrawn and deposited on the Dexalot platform, which can also be used to
buy the tokens.

When a portion is in the "OnMarket" state, it means that the tokens have been
listed for sale on a marketplace and can be bought by other users.

When a portion is in the "Sold" state, it means that the tokens have been bought by
another user on the marketplace.

In summary, the vesting portions feature allows tokens to be bought but will be
locked for a specific period of time, and these locked tokens are divided into

Page of 9 40 AvalaunchSaleV2 Paladin Blockchain Security

several portions, each with its own unlocking time and percentage of tokens that
will be unlocked at that time. The user can either withdraw or list the tokens for sale
on a marketplace, depending on the portion state.

2.1.1 Privileged Functions
• setVestingParams [admins]

• shiftVestingUnlockTimes [admins]

• setSaleParams [admins]

• shiftSaleEnd [admins]

• setDexalotParameters [admins]

• shiftDexalotUnlockTime [admins]

• setSaleToken [admins]

• updateTokenPriceInAVAX [admins]

• overrideTokenPrice [admins]

• withdrawRegistrationFees [admins]

• withdrawUnusedFunds [admins]

• removeStuckTokens [admins]

• changePhase [admins]

• activateLock [admins]

• depositTokens [moderator]

• withdrawEarningsAndLeftover [moderator]

• autoParticipate [collateral contract]

• boostParticipation [collateral contract]

• transferPortions [marketplace contract]

Page of 10 40 AvalaunchSaleV2 Paladin Blockchain Security

2.1.2 Issues & Recommendations

Issue #01 The _participate function refunds the registration fee as
sale.token instead of AVAX, breaking the contract completely

Severity

Description Currently, the _participate function transfers the sale token back
to the user instead of AVAX for the registration refund:

Line 580

sale.token.safeTransfer(user, registrationDepositAVAX);

This is incorrect, as the fee was paid in AVAX therefore the refunded
amount should be in AVAX. By sending back the sale token, the
contract misbehaves and this refund could be extremely destructive
in case the sale token has a small supply (eg. 1 “AVAX”).

Recommendation Consider transferring back AVAX instead. Also keep in mind
checks-effects-interactions.

Resolution

HIGH SEVERITY

RESOLVED

Page of 11 40 AvalaunchSaleV2 Paladin Blockchain Security

Issue #02 The contract does not work with tokens that have a fee on transfer

Severity

Description Currently, the depositTokens function transfers the desired amount
from the admin to the contract. However, if the token has a fee on
transfer, the contract will receive less tokens than expected, which
will cause withdrawMultiplePortions to revert for the last
withdrawer(s).

Recommendation Consider either whitelisting the sale contract or optimizing the
depositTokens function to only set sale.tokensDeposited to true
if the contract actually received enough tokens. Alternatively, the
admin can just send the remaining amount directly to the contract.

Resolution

MEDIUM SEVERITY

The Avalaunch team does intentionally not support tokens with a
fee on transfer for now. This feature might be implemented in a
future upgrade if desired.

RESOLVED

Page of 12 40 AvalaunchSaleV2 Paladin Blockchain Security

Issue #03 Governance privileges: The Avalaunch team has exceptional control
over the functioning of the protocol

Severity

Description The contract contains a number of governance privileges which
allows the owner to potentially carry out malicious actions. To keep
the report size reasonable, we have enumerated all governance
privileges in a single issue:

Line 224

function shiftVestingUnlockTimes(uint256 timeToShift)

external onlyAdmin

The admin can shift the unlock times so they can never be reached.
The same issue applies to dexalotUnlocktime.

Line 838

function changePhase(Phases _phase) external onlyAdmin

The admin can switch phases freely within the active sale
timeframe. However, due to the fact that the admin can also switch
the sale time via shiftSaleEnd, they essentially have full control
over the phases.

While we assess the Avalaunch team to be highly trustworthy and
we do not expect any malicious behavior, centralization risks cannot
be ignored fully, especially and specifically since several hot wallets
will have access to these privileges.

Recommendation Consider openly communicating all future changes with the
community, consider carefully placing all admin keys behind secure
key management systems (eg. AWS solutions), consider carefully
managing risk (eg. only adding liquidity to Avalaunch sales after the
sale completed successfully), and consider using RBAC instead of
the general single admin role.

Resolution

MEDIUM SEVERITY

The Avalaunch team will move towards a safer governance solution
in the future and has reiterated how they take governance security
seriously.

ACKNOWLEDGED

Page of 13 40 AvalaunchSaleV2 Paladin Blockchain Security

Issue #04 Missing length validation for setVestingParams

Severity

Description setVestingParams allows for an arbitrary length of the provided
parameters, and ensures they have the same length. Within this
function, numberOfVestedPortions becomes the length of these
inputs.

The parameter is often used to loop over, while the loop in the
setter function might not run out of gas, it can become an issue in
other functions that consume more gas or in other contracts that
might loop twice over such parameters.

Recommendation Consider setting a reasonable upper limit for the length of the input
parameters.

Resolution

LOW SEVERITY

The Avalaunch team will consider adding a length limit in the future.

ACKNOWLEDGED

Page of 14 40 AvalaunchSaleV2 Paladin Blockchain Security

Issue #05 Signature scheme is suboptimal which means it might lead to
replays on chain forks

Severity

Description Avalaunch uses an ad-hoc signature scheme to authorize
transactions by the Avalaunch team. This is suboptimal as there
have been made standards for more secure signing of transactions
which are more robust.

Additionally, Avalaunch uses abi.encodePacked for all of their
signature datas. If the data contains two variable length fields, this
could lead to collisions. Presently such collisions do not appear to
be possible as all the signature datas with 2 variable fields have the
second field (the string) as an expected fixed length.

Currently, the only replay protection for the signature is
sigExpTimestamp. This means that the provided transaction can be
executed arbitrarily often until the timestamp is reached.

Recommendation Consider using EIP-712: https://eips.ethereum.org/EIPS/eip-712.
Consider using abi.encode instead of abi.encodePacked.

Resolution
The Avalaunch team will consider implementing the EIP-712
standard in the future. abi.encodePacked is kept for gas reasons as
there are no collisions possible with the current setup.

ACKNOWLEDGED

LOW SEVERITY

Page of 15 40 AvalaunchSaleV2 Paladin Blockchain Security

Issue #06 Checks-effects-interactions pattern is not adhered to

Severity

Description Currently, the contract does not always adhere to the checks-
effects-interactions pattern:

Line 378-388

if (phaseId == uint8(Phases.Staking)) {

allocationStaking.setTokensUnlockTime(0, msg.sender,

sale.saleEnd);

} // Increment number of registered users

numberOfRegistrants++; // Increase earnings from

registration fees registrationFees += msg.value;

Line 782-789

function withdrawRegistrationFees() external onlyAdmin {

require(block.timestamp > sale.saleEnd, "Sale isn't

over.");

require(registrationFees > 0, "No fees accumulated.");

// Transfer AVAX to the admin wallet

safeTransferAVAX(msg.sender, registrationFees);

// Set registration fees to zero

registrationFees = 0;

}

Especially for the latter code snippet, the admin can drain the
contract via reentrancy, however, we do not see this as an issue
because the admin can take out any unused funds either way.

The redistribution of Xava is also not written in CEI on line 552.

Recommendation Consider adhering to the checks-effects-interactions pattern.

Resolution

LOW SEVERITY

RESOLVED

Page of 16 40 AvalaunchSaleV2 Paladin Blockchain Security

Issue #07 registerForSale can be called while the sale is not yet created
and even if sale.saleEnd has been exceeded

Severity

Description Currently, the only limitation besides the signature is the
requirement for the current phase to be in the Registration phase.
However, if the admin accidentally sets the phase to Registration
before the sale was created, all users can register themselves for
free.

_participate only ensures that the contract state is in a valid
phase. However, if sale.saleEnd has been exceeded, users can still
participate in a sale.

Recommendation Consider adding an additional requirement
require(sale.isCreated) to ensure that the sale is actually
created.

Consider checking saleEnd if desired.

Resolution

LOW SEVERITY

The sale isCreated flag is checked now.

RESOLVED

Issue #08 Users might not be able to exhaust their full allowance

Severity

Description _participate allows only for one participation in the Validation or
Staking phases.

If a user accidentally sends msg.value (AVAX) which does not
exhaust their granted allowance amount, they will get effectively
locked out from any further participation.

Recommendation Since this issue needs quite some refactoring of the _participate
logic, we recommend openly communicating with users that only
one regular participation is possible.

Resolution ACKNOWLEDGED

LOW SEVERITY

Page of 17 40 AvalaunchSaleV2 Paladin Blockchain Security

Issue #09 saleEnd cannot be reconfigured if no portions have been
configured yet

Severity

Location Line 289

require(sale.saleEnd < vestingPortionsUnlockTime[0], "Sale

end crossing vesting unlock times.");

Description The contract defines an administrative shiftSaleEnd function
which allows the administrator to move the end of the sale
backwards. However, this is impossible to do before configuring the
vesting portions due to the first portion being accessed. If this
portion does not exist, it reverts implicitly due to an out of range
error.

Recommendation Consider adjusting the requirement to be robust. Alternatively
consider acknowledging that you cannot adjust the sale end before
setting the vesting portions.

Resolution

LOW SEVERITY

RESOLVED

Page of 18 40 AvalaunchSaleV2 Paladin Blockchain Security

Issue #10 Dexalot logic can severely malfunction for tokens without a symbol

Severity

Location Line 905

_symbol := mload(add(symbol, 32))

Description The contract uses a shortcut to load in the first 32 bytes of the
symbol as the dexalot ID. However, since this shortcut uses
assembly, it is actually quite brittle.

In this case, this actually poses an issue when the symbol is zero
bytes long as random memory is accessed and provided as the
symbol. This scenario would cause the dexalot functionality to
completely break and in the worst case unexpectedly pull some
other token from the user’s wallet.

Recommendation Consider adjusting the requirement to be robust. Alternatively,
consider acknowledging that you cannot adjust the sale end before
setting the vesting portions.

Resolution
These tokens are explicitly no longer permitted through a length
requirement.

RESOLVED

LOW SEVERITY

Page of 19 40 AvalaunchSaleV2 Paladin Blockchain Security

Issue #11 Gas optimizations

Severity

Description We have consolidated the sections which can be further optimized
for gas usage below.

Line 207, 228, 561

for (uint256 i = 0; i < numberOfVestedPortions; i++) {

require(portionId < numberOfVestedPortions, "Invalid portion

id.");

numberOfVestedPortions is fetched from storage within each loop
iteration.

Line 274-278

emit SaleCreated(sale.tokenPriceInAVAX,

sale.amountOfTokensToSell, sale.saleEnd);

Some gas can be saved by passing the function parameters instead
of accessing the storage variables.

Line 353, 882

bytes memory signature,

function verifySignature(bytes32 hash, bytes memory

signature) internal view {

This signature can be provided as calldata to save on gas.

Line 524

(msg.value).mul(uint(10) **

IERC20Metadata(address(sale.token)).decimals()).div(sale.tok

enPriceInAVAX);

The sale token decimals can be cached to save on gas.

INFORMATIONAL

Page of 20 40 AvalaunchSaleV2 Paladin Blockchain Security

Line 563

lastPercent = vestingPercentPerPortion[i];

This is already fetched. The if statement could be refactored out
by simply caching lastPercent and portionVestingPrecision and
then always doing the mul-div. This would make the logic slightly
more simple as there is no longer an if-branch occurring.

Line 870-871

portionAmounts: _emptyUint256,

portionStates: _emptyPortionStates

Consider initializing these arrays through pure functions instead as
we believe right now there is a lot of storage access at these lines.

Recommendation Consider implementing the recommendations.

Resolution RESOLVED

Issue #12 Validation: Contract does not prevent moderator from accidentally
depositing tokens twice

Severity

Location Line 437

sale.tokensDeposited = true;

Description depositTokens sets a boolean to true, however, this boolean is
never checked to be false. This allows for the moderator to call
this function multiple times, and they can potentially accidentally
deposit more tokens than is necessary.

Recommendation Consider checking this boolean to be false or acknowledging the
issue. In case its desired to add more tokens to the contract, they
can always be transferred directly.

Resolution RESOLVED

INFORMATIONAL

Page of 21 40 AvalaunchSaleV2 Paladin Blockchain Security

Issue #13 Validation: Lack of phase validation for different participation
methods

Severity

Description The different methods of participation are meant to be used with
different phases (eg. the booster phase or everything but the
booster phase). However, this is not validated to be correct other
than with the admin signature.

Additionally, on a side-note, the checks within the participation
function are scattered all over the function which makes the code
extremely messy. There are many if statements to check whether
the participation is a booster, and it would be cleaner to move all
checks (requirements) to the top of the function whenever possible
(this is not possible for checks on the amount of tokens purchased,
of course).

Finally, we wonder about validating amountXavaToBurn, as it should
probably remain zero for anything but the booster and staking
phases (any other number does not do anything but might be
confusing).

Recommendation Consider whether subsequent validation is desired. Consider
moving the checks to the top of the function to be more aligned with
checks-effects-interactions.

Resolution
A logic change within redistributeXava was introduced which was
then reversed in the latest commit.

PARTIALLY RESOLVED

INFORMATIONAL

Page of 22 40 AvalaunchSaleV2 Paladin Blockchain Security

Issue #14 AVAX can get stuck in the implementation contract

Severity

Description Currently, the implementation contract does not call the function
_disableInitializers during deployment. A malicious attacker
can therefore initialize the implementation directly, setting their own
address as admin and potentially retrieve any ether which gets
stuck within the contract when other users accidentally interact
directly with the implementation.

Recommendation Consider calling _disableInitializers within the constructor.

Resolution
The implementation is now disabled which prevents anyone from
taking the AVAX.

RESOLVED

INFORMATIONAL

Page of 23 40 AvalaunchSaleV2 Paladin Blockchain Security

Issue #15 Typographical issues

Severity

Description We have consolidated the typographical errors into a single issue to
keep the report brief and readable.

Line 5

import "../interfaces/ISalesFactory.sol";

The import is unused, though we assume this (the factory variable)
might be for UI purposes.

Lines 11&12

import "@openzeppelin/contracts/cryptography/ECDSA.sol";

import "@openzeppelin/contracts/token/ERC20/SafeERC20.sol";

The contract uses non-upgradeable libraries. We expect this to be
all right however as libraries do not contain state constructors or
state.

Line 24

ISalesFactory public factory;

This line appears to be unused (though it is not strictly an issue, as
this might be useful for seeing in the explorer).

Line 159-165

function initialize(address _admin, address

_allocationStaking, address _collateral, address

_marketplace, address _moderator)

The provided parameters can be directly cast as their
corresponding type.

Line 209

// Each portion unlock time must be latter than previous

“latter” should be “later”.

INFORMATIONAL

Page of 24 40 AvalaunchSaleV2 Paladin Blockchain Security

Line 245

address _token,

This parameter can be provided as IERC20 directly.

Line 300

address _dexalotPortfolio,

The parameter can be directly cast with IDexalotPortfolio.

Line 309-315

require(_dexalotPortfolio != address(0) &&

_dexalotUnlockTime > sale.saleEnd && _dexalotUnlockTime <=

vestingPortionsUnlockTime[0] && vestingPortionsUnlockTime[0]

> 0 && sale.saleEnd > 0);

The require statement should return a clear error string.

Line 325

require(block.timestamp < dexalotUnlockTime &&

shiftedDexalotUnlockTime <= vestingPortionsUnlockTime[0]);

The require statement should return a clear error string.

Line 335, 825

address saleToken

function removeStuckTokens(address token, address

beneficiary, uint256 amount) external onlyAdmin {

saleToken can be directly cast to IERC20. It should be noted that
the address is re-cast to address on a later line, which is redundant.

Page of 25 40 AvalaunchSaleV2 Paladin Blockchain Security

Line 403

require(sale.tokenPriceInAVAX.add(thirtyPercent) > price &&

sale.tokenPriceInAVAX - thirtyPercent < price, "Price out of

range.");

For consistency reasons, safeMath could be considered to be used
throughout the whole contract, although we agree that for gas
efficiency it could be absolved here as this cannot underflow. This is
actually the case in all locations where SafeMath is not used
therefore we will not insist on enforcing SafeMath in these locations
but request you to go over the contract and verify the safety of
these locations where SafeMath is not used as well.

Line 511

require(phaseId > uint256(Phases.Registration) && phaseId ==

uint8(sale.phase), "Invalid phase.");

For consistency reasons, Phases.Registration should be casted
with uint8.

Line 566, 725, 730

p.portionAmounts[i] += lastAmount;

pBuyer.portionAmounts[portionId] += amountToSell;

totalAmountExchanged += amountToSell;

SafeMath is not respected here. However, we believe this might not
be an issue as the sum of the amounts should be capped to at most
the sale amount.

Line 613

bool eligible;

The if statement below this line can be merged with this line to
remove the if completely.

Line 710

_initParticipationForUser(buyer, 0, 0, block.timestamp,

uint(sale.phase) /*==Phases.Idle*/);

We wonder whether it makes sense to increment
numberOfParticipants++ here, though this is likely misleading.

Page of 26 40 AvalaunchSaleV2 Paladin Blockchain Security

Several requirements lack a reversion string which might make it
difficult to interpret a reversion reason within the explorers.

Many privileged functions are presently lacking events.

Recommendation Consider fixing the above issues.

Resolution PARTIALLY RESOLVED

Page of 27 40 AvalaunchSaleV2 Paladin Blockchain Security

2.2 SalesFactory

SalesFactory allows an administrator to deploy new sale contracts with a specific
admin-definable implementation as a template using the clones pattern (non-
upgradeable proxy contracts). These sale contracts are then initialized with certain
variables and marked as having been created through this official factory. The newly
created sale contract is then approved on the marketplace and added to the official
list of all sale contracts. Only valid administrators are able to use this contract.

The list of privileged administrators are defined within the separate admin contract.

2.2.1 Privileged Functions
• setAllocationStaking

• setAvalaunchMarketplace

• deploySale

• setImplementation

Page of 28 40 SalesFactory Paladin Blockchain Security

2.2.2 Issues & Recommendations

Issue #16 getAllSales has an incorrect input validation which causes the
initial requirement to pass even though the endIndex is out of
range

Severity

Location Line 124

require(endIndex >= startIndex && endIndex <=

allSales.length, "Invalid index range.");

Description The input validation of getAllSales allows for the end index to be
equal to the length of the allSales array. This end index does not
exist and will therefore cause a later line of code to implicitly revert
without any reversion message.

Recommendation Consider adjusting the second portion of the requirement to be
smaller than (<).

Resolution PARTIALLY RESOLVED

LOW SEVERITY

Issue #17 Sales moderator is a fixed wallet which cannot be changed

Severity

Description SalesFactory defines a moderator which has privileges to manage
individual sales. However, there is no way for the SalesFactory
admins to change this moderator in case it is ever compromised or
needs to be rotated.

This is the case for the collateral variable as well — if the
initialization ever needs to be done with a new collateral contract
the whole factory needs to be redeployed.

Recommendation Consider either adding a setModerator and setCollateral
function or setting the moderator to an administrative contract with
a rotatable owner/multi-signature wallet.

Resolution

LOW SEVERITY

A setModerator function has been introduced.

RESOLVED

Page of 29 40 SalesFactory Paladin Blockchain Security

Issue #18 Checks-effects-interactions pattern is not respected

Severity

Location Line 90-103

(bool success,) =

sale.call(abi.encodeWithSignature("initialize(address,addr

ess,address,address,address)", address(admin),

allocationStaking, collateral, address(marketplace),

moderator));

require(success, "Initialization failed."); // Mark sale as

created through official factory

isSaleCreatedThroughFactory[sale] = true; // Approve sale on

marketplace marketplace.approveSale(sale);

// Add sale to allSales

allSales.push(sale);

Description buyPortions does not adhere to the checks-effects-interactions
standard.

Recommendation Consider executing all external calls after the effects.

Resolution
CEI is now adhered to: isSalesCreatedThroughFactory and
allSales.push calls have been moved above the initialization.

RESOLVED

LOW SEVERITY

Page of 30 40 SalesFactory Paladin Blockchain Security

Issue #19 Typographical errors

Severity

Description We have consolidated the typographical errors and the sections
which can be further optimized for gas usage below.

Line 32

require(admin.isAdmin(msg.sender), "Only Admin can deploy

sales");

This modifier has other uses apart from deploying sales. The error
might therefore be incorrect in certain instances.

Line 37, 40 and 61

address _adminContract,

address _marketplace,

function setAvalaunchMarketplace(address _marketplace)

external onlyAdmin {

These addresses can be cast as IAdmin and
IAvalaunchMarketplace to avoid casting it later on. We do
acknowledge that if it is provided as IAdmin, the non-zero check
requires an additional cast which might explain the given approach.

Line 43, 44, 45, 56 and 62

require(_adminContract != address(0));

require(_collateral != address(0));

require(_moderator != address(0));

require(_allocationStaking != address(0));

require(_marketplace != address(0));

All of these requirements lack a reversion reason.

setAllocationStaking and setAvalaunchMarketplace lack
events.

Recommendation Consider fixing the above typographical errors.

Resolution PARTIALLY RESOLVED

INFORMATIONAL

Page of 31 40 SalesFactory Paladin Blockchain Security

Issue #20 Gas optimizations

Severity

Description We have consolidated the sections which can be further optimized
for gas usage below.

Line 10

IAdmin public admin;

admin can be made immutable to save gas.

Line 16

address public collateral;

collateral can be made immutable to save gas.

Line 18

moderator

moderator can be made immutable to save gas, though it should
likely be mutable.

Line 116

if(allSales.length > 0) return allSales[allSales.length -

1];

allSales.length is fetched from storage twice within this function
(in fact three times, as the return does a length check as well, but it
is generally accepted to not over-optimize that in non-critical
locations).

Recommendation Consider implementing the gas optimizations mentioned above.

Resolution PARTIALLY RESOLVED

INFORMATIONAL

Page of 32 40 SalesFactory Paladin Blockchain Security

2.3 AvalaunchMarketplace

AvalaunchMarketplace is the marketplace contract where users offer their owned
portions to buyers.

Each deployed AvalaunchSaleV2 contract will be approved on the marketplace
during deployment. Users can then offer and remove their portions via
listPortions and removePortions.

The buyPortions function allows users to purchase listed portions via a predefined
configuration consisting of owner, buyer, sale, portions, priceSum and
sigExpTimestamp which needs a valid off-chain signature by the admin of the
marketplace. The desired portion will then get delisted from the marketplace and is
being transferred from the old owner to the buyer via the transferPortions
function in the corresponding AvalaunchSaleV2 contract.

Each purchase is to be made in AVAX and will be sent directly to the old owner after
a fee is deducted. The fee can be freely set by the contract admin.

2.3.1 Privileged Functions
• withdrawAVAX

• setFactory

• setFeeParams

• approveSale(factory | admin)

Page of 33 40 AvalaunchMarketplace Paladin Blockchain Security

2.3.2 Issues & Recommendations

Issue #21 Signature lacks replay protection

Severity

Description The only replay protection for the signature is sigExpTimestamp.
This means that the provided transaction can be executed
arbitrarily often until the timestamp is reached.

Moreover, the signature lacks a chainId check. If the Avalaunch
team ever decides to launch on another chain, the signature might
also be valid there.

Consider the following scenario:

It is the year 2024, Avalaunch decided to launch their protocol on
Ethereum Mainnet. Alice and Bob are participating in a new presale
and Alice decides to list her portion. Bob wants to buy her portion
for 100 ETH, the admin signs the transaction and Bob can execute
it.

Unfortunately, Alice also participated on the Avalanche chain and
she listed the same portionId for a sale with the same address but
she wants to sell it for 1000 AVAX. Bob can now execute the already
signed transaction on Avalanche as well and purchase Alice’s
portion for 100 AVAX.

This scenario has a relatively low likelihood, e.g. the sale contract
must have the same address which means the factory must have the
same address as well and it must be deployed with the same nonce.

An issue with a higher likelihood is the fact that the signature can be
replayed within the same contract as well: there is no
“consumption” of signatures other than the expiration. This means
that if a portion is sold from Alice to Bob, then Alice buys it back
from Bob, Bob can potentially steal it from Alice at an unfavorable
price by using the old signature.

Recommendation Consider adding the chainId to the signature and mark the
signature as used after the transaction was executed. Additionally,
the provided timestamp should not be too loose.

Consider using EIP-712 for signatures.

HIGH SEVERITY

Page of 34 40 AvalaunchMarketplace Paladin Blockchain Security

Resolution
A check was added to ensure the signature can be used only once.
The Avalaunch team also stated that a launch on another chain is
highly unlikely hence the cross-chain replay is not a concern to
them.

RESOLVED

Issue #22 Governance risk: Admin can frontrun any purchase with an increase
of the fee parameters

Severity

Description Currently, the admin has the privilege to change the fee parameters
without any limitation. They also have the privilege to reduce the
price of any sale to zero.

While this itself is already an issue, the admin can frontrun any
purchase, changing the fee parameters to a very high fee, resulting
in a loss of funds for the portion owner.

Recommendation Consider limiting the fee parameters to a reasonable value,
consider managing the admin keys as described in the previous
governance risk issue.

Resolution

MEDIUM SEVERITY

The fee parameter is now limited to 5%.

RESOLVED

Page of 35 40 AvalaunchMarketplace Paladin Blockchain Security

Issue #23 There is no way to remove sale contracts

Severity

Description Currently, there is no possibility to remove sale contracts, once
approved. Due to flexibility reasons, it might make sense to have a
function to remove approved sale contracts.

Recommendation Consider implementing a function that allows for removing
approved sale contracts (if desired, as this might introduce stuck
portions as a downside).

Resolution

LOW SEVERITY

RESOLVED

Issue #24 Checks-effects-interactions pattern is not adhered to

Severity

Description buyPortions does not adhere to the checks-effects-interactions
standard:

IAvalaunchSaleV2(sale).transferPortions(owner, msg.sender,

portions);

// Compute fee amount

uint256 feeAmount =

msg.value.mul(feePercentage).div(feePrecision);

// Increase total fees collected

totalFeesCollected += feeAmount;

Recommendation Consider executing the external call after the effects.

Resolution RESOLVED

LOW SEVERITY

Page of 36 40 AvalaunchMarketplace Paladin Blockchain Security

Issue #25 Contract deployment does not disable the initializer

Severity

Description There is no constructor code that disables the initializer. This results
in the possibility of users initializing the implementation itself,
which, in combination with payable functions, might lead to stuck or
stolen AVAX if a user accidentally interacts with the initialized
implementation directly.

Recommendation Consider disabling the initializer during the contract deployment.

Resolution

LOW SEVERITY

An initializer blocking constructor has been added.

RESOLVED

Page of 37 40 AvalaunchMarketplace Paladin Blockchain Security

Issue #26 Typographical errors

Severity

Description We have consolidated the typographical errors into a single issue to
keep the report brief and readable.

Line 34-36

event PortionListed(address portionOwner, address

saleAddress, uint256 portionId);

event PortionRemoved(address portionOwner, address

saleAddress, uint256 portionId);

event PortionSold(address portionSeller, address

portionBuyer, address saleAddress, uint256 portionId);

It might be valuable to index the addresses of these events.

Line 51

function initialize(address _admin, address _factory,

uint256 _feePercentage, uint256 _feePrecision) external

initializer {

The first two addresses can be immediately cast to their desired
types.

Line 163

emit SaleApproved(sale, block.timestamp);

Emitting a timestamp in an event seems rather redundant as this
information is available in the log.

Line 179

function setFactory(address _factory) external onlyAdmin {

This variable can be directly provided as ISalesFactory.

INFORMATIONAL

Page of 38 40 AvalaunchMarketplace Paladin Blockchain Security

withdrawAVAX, setFactory and setFeeParams lack events.

Some requirements lack reversion reasons which may be confusing
to users.

Recommendation Consider fixing the typographical errors.

Resolution RESOLVED

Page of 39 40 AvalaunchMarketplace Paladin Blockchain Security

Page of 40 40 AvalaunchMarketplace Paladin Blockchain Security

	Table of Contents
	Disclaimer
	1 Overview
	1.1 Summary
	1.2 Contracts Assessed
	1.3 Findings Summary
	1.3.1 AvalaunchSaleV2
	1.3.2 SalesFactory
	1.3.3 AvalaunchMarketplace

	2 Findings
	2.1 AvalaunchSaleV2
	2.1.1 Privileged Functions
	2.1.2 Issues & Recommendations

	2.2 SalesFactory
	2.2.1 Privileged Functions
	2.2.2 Issues & Recommendations

	2.3 AvalaunchMarketplace
	2.3.1 Privileged Functions
	2.3.2 Issues & Recommendations

